Форум
» Назад на решение задач по физике и термеху
Регистрация | Профиль | Войти | Забытый пароль | Присутствующие | Справка | Поиск

» Добро пожаловать, Гость: Войти | Регистрация
    Форум
    Математика
        Аналитическая геометрия
Отметить все сообщения как прочитанные   [ Помощь ]
» Добро пожаловать на форум "Математика" «

Переход к теме
<< Назад Вперед >>
Несколько страниц [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 ]
Модераторы: Roman Osipov, RKI, attention, paradise
  

RKI



Долгожитель

5) Возьмем три точки, лежащие на заданных параллельных прямых
(5; 6; -3)
(2; 3; -3)
(18; 7; -7)
Запишите уравнение плоскости, проходящей через три точки.
Предположим, оно будет иметь вид Ax+By+Cz+D = 0
Из точки D опустим перпендикуляр на построенную плоскость.
Это будет точка H(x; y; z), координаты которой надо найти.
Возьмите два вектора с плоскости, например a и b.
Скалярные произведения (DH;a) (DH;b) будут равны нулю.
И точка H лежит на построенной плоскости, то есть
Ax+By+Cz+D=0.
Из трех условий и найдете искомые координаты точки H

Всего сообщений: 5184 | Присоединился: октябрь 2008 | Отправлено: 13 нояб. 2008 17:28 | IP
RKI



Долгожитель

1) У Вас есть прямая 5x+12y-1=0.
Искомые прямые имееют вид Ax+By+C = 0. Данные прямые параллельны исходной. По условию параллельности прямых
A/5 = B/12
A = 5B/12
Уравнения искомых прямых приобретают вид
5Bx/12+By+C = 0
Постройте перпендикуляр от одной прямой к другой. Длина этого перпендикуляра равна 5. Из этого условия найдете B и C


Всего сообщений: 5184 | Присоединился: октябрь 2008 | Отправлено: 13 нояб. 2008 17:49 | IP
Midnight Sun


Новичок

Появился еще вопросик. Никак не могу подобрать подходящий алгоримт. В общем, есть уравнение плоскости в пространстве. даны две точки, лежащие на этой плоскости. Необходимо достроить на этой плоскости правильный шестигранник так, чтобы отрезок между двумя точками составлял одну из граней шестигранника. Может кто знает?

Всего сообщений: 7 | Присоединился: ноябрь 2008 | Отправлено: 15 нояб. 2008 12:58 | IP
RKI



Долгожитель


Цитата: Midnight Sun написал 15 нояб. 2008 12:58
Появился еще вопросик. Никак не могу подобрать подходящий алгоримт. В общем, есть уравнение плоскости в пространстве. даны две точки, лежащие на этой плоскости. Необходимо достроить на этой плоскости правильный шестигранник так, чтобы отрезок между двумя точками составлял одну из граней шестигранника. Может кто знает?


У Вас есть:
Ax+By+Cz+D=0 - уравнение плоскости
M1(x1; y1; z1) M2(x2; y2; z2) - точки этой плоскости

1 шаг)
Посчитаем длину M1M2 - это будет длина стороны правильного шестиугольника

2 шаг) Возьмем точку M3(x3; y3; z3) в предположении, что M2M3 следующая сторона правильного шестиугольника.
Длина вектора M2M3 равна длине M1M2 - это первое условие.
Точка M3 лежит на плоскости, значит Ax3+By3+Cz3+D=0 - это второе условие.
Так как шестиугольник правильный, то угол между сторонами равен 60 градусов. Рассмотрим скалярное произведение векторов (M1M2; M2M3). Распишите это скалярное произведение покоординатно. А с другой стороны, по определению скалярного произведения
(M1M2; M2M3) = |M1M2|*|M2M3|*cos60 - это третье условие. Из трех условий найдете координаты точки M3.
и так далее все шаги

Всего сообщений: 5184 | Присоединился: октябрь 2008 | Отправлено: 15 нояб. 2008 13:47 | IP
Black_Star



Участник

Люди кто может подсказать как мне записать ответ если при подщёте обёма пирамиди у меня выходит 0 ?  И что это может означать? Такое веди реально?
          ___   ____   ____
V = |(M1M2xM1M3) M1M4| = 1/6 * |(0;12;12)(-6;-1;1)| =......=0 ?

Всего сообщений: 109 | Присоединился: ноябрь 2007 | Отправлено: 15 нояб. 2008 14:34 | IP
RKI



Долгожитель

Вы уверены что нуль?

Всего сообщений: 5184 | Присоединился: октябрь 2008 | Отправлено: 15 нояб. 2008 14:37 | IP
Black_Star



Участник

Да, перепровирял даже. Вот точки
М1(5;2;0)
M2(2;5;0)
M3(1;2;4)
M4(-1:1;1)

Всего сообщений: 109 | Присоединился: ноябрь 2007 | Отправлено: 15 нояб. 2008 14:42 | IP
RKI



Долгожитель

у меня получилось
M1M2xM1M3 = {12; 12; 0}

Всего сообщений: 5184 | Присоединился: октябрь 2008 | Отправлено: 15 нояб. 2008 14:59 | IP
RKI



Долгожитель

посмотрите внимательно векторное произведение

Всего сообщений: 5184 | Присоединился: октябрь 2008 | Отправлено: 15 нояб. 2008 15:00 | IP
Black_Star



Участник

Ну, и Что выходит  V= 1/6 *|(0;12;12) (-6;-1;1)| = 1/6*|0*(-6)+12*(-1)+12*1| = 0  Теже яйца только в профиль

Всего сообщений: 109 | Присоединился: ноябрь 2007 | Отправлено: 15 нояб. 2008 15:07 | IP

Эта тема закрыта, новые ответы не принимаются

Переход к теме
<< Назад Вперед >>
Несколько страниц [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 ]

Форум работает на скрипте © Ikonboard.com