Форум
» Назад на решение задач по физике и термеху
Регистрация | Профиль | Войти | Забытый пароль | Присутствующие | Справка | Поиск

» Добро пожаловать, Гость: Войти | Регистрация
    Форум
    Математика
        2.1.6 Первообразная (неопределенный интеграл)
Отметить все сообщения как прочитанные   [ Помощь ]
» Добро пожаловать на форум "Математика" «

Переход к теме
<< Назад Вперед >>
Несколько страниц [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 ]
Модераторы: Roman Osipov, RKI, attention, paradise
  

paradise


Долгожитель

посмотрите мое предыдущее сообщение, я добавила еще один вариант решения Вашего примера, какой хотите, тот и выбирайте!

Всего сообщений: 428 | Присоединился: ноябрь 2008 | Отправлено: 29 апр. 2009 17:14 | IP
galOchka



Новичок

Спасибо вам большое, правда очень помогли
А вообще только этими двумя способами можно решить этот неопределённый интеграл. Просто преподователь сказал написать ему все возможные способы решения.,а есть ещё какие-нибудь?

Всего сообщений: 15 | Присоединился: апрель 2009 | Отправлено: 29 апр. 2009 17:41 | IP
odinok



Новичок

не ужели никто не может решить?

S ( (2+x^2)^0.5-(2-x^x)^0.5 ) * dx) / (4-x^4)^0.5

S dx/ ( x * (2+x-x^2)^0.5)

Всего сообщений: 15 | Присоединился: март 2009 | Отправлено: 29 апр. 2009 18:47 | IP
dima3x



Новичок

int ((4-(x^2))^0.5)/(x^2)

Всего сообщений: 25 | Присоединился: апрель 2009 | Отправлено: 29 апр. 2009 19:33 | IP
aido



Долгожитель

замена x= 2sin(y) прекрасно решается))

Всего сообщений: 569 | Присоединился: сентябрь 2008 | Отправлено: 29 апр. 2009 19:41 | IP
dima3x



Новичок

а дальше а то че то не сходиться я уже пробовал


(Сообщение отредактировал attention 7 дек. 2009 3:49)

Всего сообщений: 25 | Присоединился: апрель 2009 | Отправлено: 29 апр. 2009 19:49 | IP
AlexVesna


Новичок

ProstoVasya,огромное спасибо!!!!!

Всего сообщений: 14 | Присоединился: апрель 2009 | Отправлено: 29 апр. 2009 22:51 | IP
Gooseberry



Новичок

Помогите пожалуста решить интеграл:



(Сообщение отредактировал attention 7 дек. 2009 3:50)

Всего сообщений: 9 | Присоединился: март 2009 | Отправлено: 1 мая 2009 16:39 | IP
galOchka



Новичок

Я к вам всё с тем же вопросом, мне просто перепод сказал все возможные варианты решения

Найдите неопределённый интеграл

Интеграл 3х^2 – 1 /  х^3 – х  dx
Вот так его находить можно или нет:
Разложим знаменатель на множетели х^3-x=x(x-1)(x+1)
Далее представим подинтегральную функцию в виде
3x^2-1 /  х^3 – х  dx = A/x + B/x-1 + C/x+1
Освободив равенство от дробей, получим:
3x^2-1=A(x-1)(x+1)+B x(x+1) + C x(x-1)  и тд...
ответ кстати немного другой получается , в тех примерах был  ln|x^3-x|+C , а вот если так решать то ln|x^3-1|+C

PS: интегрируя, получим:
Интеграл 3х^2 – 1 /  х^3 – х  dx = Интеграл dx/х + Интеграл dx/х - 1 + Интеграл dx/х + 1 = ln x+ ln (x-1) + ln (x+1) + C = ln x(x-1)(x+1) +C = ln x(x^2-1) + C = ln |x^3-1|+ C

Скажите так можно решать, и вообще есть ещё способы решения кроме МЕТОДА ЗАМЕНЫ и МЕТОДА ВНЕСЕНИЯ Ф-ЦИИ ПОД ДИФФЕРЕНЦИАЛ?  
Плизззз помогите...


(Сообщение отредактировал galOchka 1 мая 2009 20:11)

Всего сообщений: 15 | Присоединился: апрель 2009 | Отправлено: 1 мая 2009 19:54 | IP
paradise


Долгожитель


Цитата: galOchka написал 1 мая 2009 19:54
Я к вам всё с тем же вопросом, мне просто перепод сказал все возможные варианты решения

Найдите неопределённый интеграл

Интеграл 3х^2 – 1 /  х^3 – х  dx
Вот так его находить можно или нет:
Разложим знаменатель на множетели х^3-x=x(x-1)(x+1)
Далее представим подинтегральную функцию в виде
3x^2-1 /  х^3 – х  dx = A/x + B/x-1 + C/x+1
Освободив равенство от дробей, получим:
3x^2-1=A(x-1)(x+1)+B x(x+1) + C x(x-1)  и тд...
ответ кстати немного другой получается , в тех примерах был  ln|x^3-x|+C , а вот если так решать то ln|x^3-1|+C

PS: интегрируя, получим:
Интеграл 3х^2 – 1 /  х^3 – х  dx = Интеграл dx/х + Интеграл dx/х - 1 + Интеграл dx/х + 1 = ln x+ ln (x-1) + ln (x+1) + C = ln x(x-1)(x+1) +C = ln x(x^2-1) + C = ln |x^3-1|+ C

Скажите так можно решать, и вообще есть ещё способы решения кроме МЕТОДА ЗАМЕНЫ и МЕТОДА ВНЕСЕНИЯ Ф-ЦИИ ПОД ДИФФЕРЕНЦИАЛ?  
Плизззз помогите...


(Сообщение отредактировал galOchka 1 мая 2009 20:11)



во-первых, использовать метод неопределённых коэффициентов можно!
во-вторых, при любом методе интегрирования должно получаться  ln|x^3-x|+C, Ваш ответ неправильный, т.к. если Вы возьмёте производную от своего ответа, то Вы не получите подынтегральную функцию, а так быть не должно!
в-третьих, методов интегрирования достаточно и все они описываются подробно в интернете, почитайте!



Цитата: galOchka написал 1 мая 2009 19:54

PS: интегрируя, получим:
Интеграл 3х^2 – 1 /  х^3 – х  dx = Интеграл dx/х + Интеграл dx/х - 1 + Интеграл dx/х + 1 = ln x+ ln (x-1) + ln (x+1) + C = ln x(x-1)(x+1) +C = ln x(x^2-1) + C = ln |x^3-1|+ C



ln|x|+ln|x+1|+ln|x-1| + C = ln|x*(x+1)*(x-1)| + C =  ln|x^3 - x| + C

(Сообщение отредактировал attention 7 дек. 2009 3:51)

Всего сообщений: 428 | Присоединился: ноябрь 2008 | Отправлено: 2 мая 2009 0:24 | IP

Отправка ответа:
Имя пользователя   Вы зарегистрировались?
Пароль   Забыли пароль?
Сообщение

Использование HTML запрещено

Использование IkonCode разрешено

Смайлики разрешены

Опции отправки

Добавить подпись?
Получать ответы по e-mail?
Разрешить смайлики в этом сообщении?
Просмотреть сообщение перед отправкой? Да   Нет
 

Переход к теме
<< Назад Вперед >>
Несколько страниц [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 ]

Форум работает на скрипте © Ikonboard.com